
Wydawca: O'Reilly Media, Inc, USA
Data wydania: 24.06.2020
Typ okładki:miękka okładka
EAN: 9781492072942
Opis
Opis
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.
Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.
With this book, you'll learn:
Why exploratory data analysis is a key preliminary step in data science
How random sampling can reduce bias and yield a higher-quality dataset, even with big data
How the principles of experimental design yield definitive answers to questions
How to use regression to estimate outcomes and detect anomalies
Key classification techniques for predicting which categories a record belongs to
Statistical machine learning methods that "learn" from data
Unsupervised learning methods for extracting meaning from unlabeled data
Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.
With this book, you'll learn:
Why exploratory data analysis is a key preliminary step in data science
How random sampling can reduce bias and yield a higher-quality dataset, even with big data
How the principles of experimental design yield definitive answers to questions
How to use regression to estimate outcomes and detect anomalies
Key classification techniques for predicting which categories a record belongs to
Statistical machine learning methods that "learn" from data
Unsupervised learning methods for extracting meaning from unlabeled data
Szczegóły
Szczegóły
Data wydania: 24.06.2020
Liczba stron: 350
Wymiary: 23.3x17.8
Typ okładki:miękka okładka
Wydawca: O'Reilly Media, Inc, USA
Tytuł:Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python
EAN: 9781492072942
Recenzje
Recenzje
Produkt nie ma jeszcze recenzji.
Zamieszczenie recenzji nie wymaga logowania. Sklep nie prowadzi weryfikacji, czy autorzy recenzji nabyli lub użytkowali dany produkt.
Nasza cena:296,50 złCena katalogowa dostawcy: 328,90 zł
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9+
Wysyłamy w 10 dni
Dostawa do księgarni0 zł
Sprawdź koszt dostawy