
Wydawca: Aksjomat Piotr Nodzyński
Data wydania: 01.01.2022
Typ okładki:miękka okładka
EAN: 9788364660993
Opis
Opis
W roku 2021 odbyła się XXX edycja Międzynarodowego Konkursu „Kangur Matematyczny” w Polsce. Była to więc edycja jubileuszowa — możemy być dumni z tego jubileuszu, bo Polska dołączyła do konkursu już w rok po Francji — ojczyźnie Kangura Matematycznego. Edycji tej (podobnie jak poprzedniej) towarzyszyły bardzo trudne warunki zewnętrzne: zamknięte szkoły, utrudniona komunikacja, rozliczne restrykcje uniemożliwiające, a co najmniej utrudniające, normalne życie. Przeprowadzenie konkursu jako takiego nie było łatwe, ale dzięki ogromnej, bezinteresownej pracy nauczycieli, życzliwości dyrektorów szkół, rodziców i samych uczniów udało się osiągnąć cel.
Komitet Organizacyjny Konkursu przygotował dla uczczenia jubileuszu publikację „wspomnieniową” przeznaczoną dla uczniów najstarszych klas szkół podstawowych. W niniejszej broszurze zawarliśmy trzy publikowane przed laty miniatury matematyczne, uznane przez członków Komitetu za na tyle interesujące, by po latach przypomnieć je uczniom, którzy nie mieli wielkich szans, by zgłębić ich treść.
W miniaturze pierwszej autor zgłębia zawiłości tak zdawałoby się prostego pojęcia jak przystawanie trójkątów. Przedstawia w niej precyzyjną definicję tytułowego pojęcia, następnie przypomina znane ze szkoły cechy przystawania. W dalszej treści przytacza inne cechy, które niekoniecznie są używane w edukacji szkolnej. Na zakończenie artykułu autor przenosi wyniki i na czworokąty, co jest zapewne dla wielu uczniów nowością. Czytelnik dowie się, jak można wykorzystywać podstawowe, znane ze szkoły cechy przystawania trójkątów do opisu i klasyfikacji niektórych czworokątów — równoległoboku, trapezu równoramiennego, deltoidu. Rozumowania zaprezentowane w tej miniaturce to czysta logika — świetna szkoła ćwiczenia umysłu, kształtowania zdolności i wdrażania dyscypliny intelektualnej.
Druga miniatura również ma charakter geometryczny. Poświęcona jest konstrukcyjnym metodom podziału odcinka na równe części, przy czym przez termin „konstrukcyjny” rozumie się konstruowalność w sensie Platona, czyli za pomocą cyrkla i linijki. Jakkolwiek metody„platońskiego” podziału odcinka na równe części zostały opracowane już w starożytności, a dzięki twierdzeniom sformułowanym przez Talesa z Miletu (żył w latach 620-540 przed Chrystusem), stały się znane nawet uczniom szkół podstawowych, prezentowane w tym artykule sposoby podziału są nietypowe i mało znane. Istotną cechą tych metod jest ich charakter rekurencyjny: jeżeli umiemy podzielić odcinek na n części, to umiemy też podzielić go na n ` 1 części. Właściwość ta wprost zachęca do zastosowania komputera — charakter rekurencyjny ułatwia zaprogramowanie konstrukcji i wykonania jej z zastosowaniem technologii informacyjnych.
Miniatura trzecia, w odróżnieniu od dwóch pierwszych, ma charakter lekkiej gawędy na temat praktycznych pożytków sztuki dzielenia z resztą. Czytelnik dowie się z niej m.in, jak może zaimponować kolegom, naśladując magików odgadujących, jakiej karty brakuje w talii. Autorki opisują kilka takich sztuczek, których tajemnica leży właśnie we własnościach dzielenia z resztą. Jednak nie tylko sztuczki karciane znajdują się w tym miłym do czytania tekście. Jeden z rozdziałów miniatury ma tytuł „W jaki dzień tygodnia wypadną Twoje setne urodziny”. Tak, to rozdział o tzw. kalendarzu stuletnim. Jest on nieco trudniejszy od poprzedniego, ale wielce pouczający — w kalendarzu też ukrywają się reszty z dzielenia. Na zakończenie lektury Czytelnik dowie się, dlaczego kasjerka w kasie sklepowej, która ręcznie wpisuje uszkodzony kod towaru, nie myli się w tym długim rządku cyfr ze szkodą dla kupującego. Przy okazji Czytelnik zaznajomi się z, jakże obecnie ważnym, pojęciem cyfry kontrolnej.
Producent/osoba odpowiedzialna za bezpieczeństwo produktu
Wydawnictwo Aksjomat Piotr Nodzyński
ul. Wita Stwosza 1/7
87-100 Toruń
wydawnictwo@aksjomat.torun.pl
48566226941
Komitet Organizacyjny Konkursu przygotował dla uczczenia jubileuszu publikację „wspomnieniową” przeznaczoną dla uczniów najstarszych klas szkół podstawowych. W niniejszej broszurze zawarliśmy trzy publikowane przed laty miniatury matematyczne, uznane przez członków Komitetu za na tyle interesujące, by po latach przypomnieć je uczniom, którzy nie mieli wielkich szans, by zgłębić ich treść.
W miniaturze pierwszej autor zgłębia zawiłości tak zdawałoby się prostego pojęcia jak przystawanie trójkątów. Przedstawia w niej precyzyjną definicję tytułowego pojęcia, następnie przypomina znane ze szkoły cechy przystawania. W dalszej treści przytacza inne cechy, które niekoniecznie są używane w edukacji szkolnej. Na zakończenie artykułu autor przenosi wyniki i na czworokąty, co jest zapewne dla wielu uczniów nowością. Czytelnik dowie się, jak można wykorzystywać podstawowe, znane ze szkoły cechy przystawania trójkątów do opisu i klasyfikacji niektórych czworokątów — równoległoboku, trapezu równoramiennego, deltoidu. Rozumowania zaprezentowane w tej miniaturce to czysta logika — świetna szkoła ćwiczenia umysłu, kształtowania zdolności i wdrażania dyscypliny intelektualnej.
Druga miniatura również ma charakter geometryczny. Poświęcona jest konstrukcyjnym metodom podziału odcinka na równe części, przy czym przez termin „konstrukcyjny” rozumie się konstruowalność w sensie Platona, czyli za pomocą cyrkla i linijki. Jakkolwiek metody„platońskiego” podziału odcinka na równe części zostały opracowane już w starożytności, a dzięki twierdzeniom sformułowanym przez Talesa z Miletu (żył w latach 620-540 przed Chrystusem), stały się znane nawet uczniom szkół podstawowych, prezentowane w tym artykule sposoby podziału są nietypowe i mało znane. Istotną cechą tych metod jest ich charakter rekurencyjny: jeżeli umiemy podzielić odcinek na n części, to umiemy też podzielić go na n ` 1 części. Właściwość ta wprost zachęca do zastosowania komputera — charakter rekurencyjny ułatwia zaprogramowanie konstrukcji i wykonania jej z zastosowaniem technologii informacyjnych.
Miniatura trzecia, w odróżnieniu od dwóch pierwszych, ma charakter lekkiej gawędy na temat praktycznych pożytków sztuki dzielenia z resztą. Czytelnik dowie się z niej m.in, jak może zaimponować kolegom, naśladując magików odgadujących, jakiej karty brakuje w talii. Autorki opisują kilka takich sztuczek, których tajemnica leży właśnie we własnościach dzielenia z resztą. Jednak nie tylko sztuczki karciane znajdują się w tym miłym do czytania tekście. Jeden z rozdziałów miniatury ma tytuł „W jaki dzień tygodnia wypadną Twoje setne urodziny”. Tak, to rozdział o tzw. kalendarzu stuletnim. Jest on nieco trudniejszy od poprzedniego, ale wielce pouczający — w kalendarzu też ukrywają się reszty z dzielenia. Na zakończenie lektury Czytelnik dowie się, dlaczego kasjerka w kasie sklepowej, która ręcznie wpisuje uszkodzony kod towaru, nie myli się w tym długim rządku cyfr ze szkodą dla kupującego. Przy okazji Czytelnik zaznajomi się z, jakże obecnie ważnym, pojęciem cyfry kontrolnej.
Producent/osoba odpowiedzialna za bezpieczeństwo produktu
Wydawnictwo Aksjomat Piotr Nodzyński
ul. Wita Stwosza 1/7
87-100 Toruń
wydawnictwo@aksjomat.torun.pl
48566226941
Szczegóły
Szczegóły
Data wydania: 01.01.2022
Liczba stron: 62
Wymiary: 16.5x24.0cm
Typ okładki:miękka okładka
Wydawca: Aksjomat Piotr Nodzyński
Tytuł:Miniatury matematyczne 74 Przystawanie trójkątów i charakteryzacje czworokątów O podziałach odcinka na równe części Do czego mogą się przydać reszty z dzielenia?
EAN: 9788364660993
Recenzje
Recenzje
Produkt nie ma jeszcze recenzji.
Zamieszczenie recenzji nie wymaga logowania. Sklep nie prowadzi weryfikacji, czy autorzy recenzji nabyli lub użytkowali dany produkt.
Nasza cena:11,80 zł
Cena sugerowana przez wydawcę: 20,54 zł
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9+
Wysyłamy w 3 dni
Dostawa do księgarni0 zł
Sprawdź koszt dostawy





































